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ABSTRACT 

       The magnetic behaviours of a mixed Blume-Capel Ising ferrimagnetic system on a 

square lattice having spins 
2

1
A

i  and spins 1,0 B
j , in the absence and presence of an 

external magnetic field, are investigated, respectively. Our results which are examined have 

interesting features depending on higher positive values of anisotropy field. The longitudinal 

magnetic fields dependence of the spin compensation temperature is the essential substance 

of research. It is worth to note that in this model, the contribution of magnetic free energy to 

the thermodynamic stability of the mixed spin ferrimagnet with first nearest neighbour 

interaction is indicated.  
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INTRODUCTION 

 During the last years a lot of efforts has been directed to the study of critical 

phenomena in mixed-spin Ising systems consisting of spin-1/2 and spin- S  atoms 

with 2/1S . These systems are well adapted to study a certain type of ferrimagnetism, 

namely molecular-based magnetic materials which are of great interest because of its 

interesting and possibly useful properties for technological applications and academic 

research[1,2,3]. Ferrimagnets are materials where ions on different sublattices have opposing 

magnetic moments and show paramagnetic behaviour above transition temperature 

( cT )[4,5,6]. T.Kaneyoshi[7], has investigated a mixed Ising ferrimagnetic system consisting 

of spin-1/2 and spin-1 and found a compensation point induced by the different transverse 

fields. The compensation phenomenon of the mixed spin ferrimagnetic system on a square 

lattice in the presence of an oscillating magnetic field has been studied by G. Buendia[8]. On 

the other hand, J.Oitmaa et al[9] introduced mixed-spin models on a decorated simple cubic 

lattice showing a compensation behaviour. The authors[10] found, in a series study of a 

mixed-spin model, in the absence of an external magnetic field, that the model with nearest 

neighbor interactions only, does not appear to have a ferrimagnetic compensation point. 
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Other researchers[3,4], in this respect, observed that the effect of next-nearest-neighbour 

interaction between the spin sites on the lattice possibly leads to a compensation 

phenomenon. The single-ion anisotropy and external fields may cause a compensation 

temperature, as well[6,11]. 

It is worth to note that several theoretical investigations have recently been reported 

concerning a mixed-spin model with different longitudinal fields[6,12]. However, in this 

research, we have interested to study a ferrimagnetic mixed spin 
2

1
A

i  and spin 1B
j  

Blume-Capel Ising model. The work includes, in Section 2, a formulation of the model and 

its mean field solution. It has been calculated the magnetic Gibbs free energy of the model, as 

well. Finally, we discuss, in Section 3, the possibility of multicompensation points, for 

various values of the anisotropies and longitudinal fields, respectively, at low temperatures. 

Besides, it has been examined the free energy behaviour of  the mixed system.  

 
Theory 
The model which is considered consists of two interpenetrating sublattices. One sublattice 

has spins )( A
i that can take two values )

2

1
( , the other sublattice has spins )( B

j that can 

take three values )1,0(  . Each )( A
i spin has only )( B

j spins as nearest neighbors and vice 

versa. The Hamiltonian of the mixed-spin Blume–Capel Ising ferrimagnetic system, is given 

by [13]: 

 
j

B
j

ji

B
j

A
i DJH 2

,

)(                                                         (1) 

  where  J is  the exchange interaction parameter(J <0), D is the crystal field acting 

on B-atoms. The system is described, in the presence of an external magnetic field, by the 

following Hamiltonian[14], 

 
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B
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j

ji
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j
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2

,
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Gibbs free energy of the system is obtained from a mean field calculation of the 

Hamiltonian based on the Bogoliubov inequality [5,15]: 

000  HHGG                                                                      (3)     

where  G  is the free energy of H given by relation (2), that: 

ZTkG B ln ;  
ji

HeZ
,

                                                           (4)  

0G  is the free energy of a paramagnetic phase and 0H  a trial Hamiltonian depending 
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 on variational parameters, that: 

00 ln ZTkG B ;  
ji

HeZ
,

0
0                                                      (5) 

Z, 0Z are the true partition function and trial one respectively. 

In this research we consider one of the possible choices of 0H , namely: 

 
ji
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j
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i
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ji
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0 )(])([                    (6) 

where A and B  are the two variational parameters related to the two different spins A
i  

and B
j  respectively. 

By minimizing the right hand of Eq.(3) with respect to variational parameters, we obtain the 

approximated free energy, that:  
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where N  is the total number of sites of lattice. Minimizing this expression with respect to 

BA  ,  we obtain,  

  BA Jzm  ,   AB Jzm  ,                                                                (8) 

with, 

)(
2

1
tanh

2

1 L
AA hm                                                                      (9) 

DL
B

L
B

B eh

h
m 







)cosh(2

)sinh(2
                                                         (10) 

where hh L  , z
TK B

,
1

  is the coordination number of the lattice. 

It is worth noting that the ferrimagnetic case shows that the signs of sublattice magnetizations 

are different, and there may be a compensation point at which the total longitudinal 

magnetization per site[3],     

)(
2

1
BA mmM  ,                                                                       (11) 

is equal to zero. 
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Results and Discussion  

         At zero temperature, we find two phases with different values of ),,( BA mm , namely, 

the ordered ferrimagnetic phase )}
2

1
,1(),

2

1
,1{(  orO as well, and disordered phase 

)
2

1
,0(),

2

1
,0(  orD , where the parameter   is defined by: 

  2)( B
j                                                                              (12) 

In this research, we examine the spin compensation temperature of a mixed spin-1/2 and 

spin-1 Blume-Capel Ising ferrimagnetic model, for a square lattice. Now, let us study the 

phase diagram of the mixed spin ferrimagnetic system with different crystal fields through 

which we consider the characteristic magnetic properties of the system under the influence of 

different longitudinal fields.  

Fig.1 stands for the total magnetization versus the absolute temperature, in the absence of an 

external magnetic field, for different values of JD / . One can see that there is a response of 

the system for induction of one compensation temperature in the range of negative values of 

magnetic anisotropy, namely, 95.1,90.1,85.1/ JD . The results shown in the 

Figures(2,3) are consistent with those derived from Fig.1. Whereas one can observe in the 

Fig.4, the system doesn't exhibit any compensation points in the thermal variation of the 

system magnetization, which can be obtained by solving the coupled equations for Am  and 

Bm  numerically, depending on the values of the applied magnetic fields, in the range of 

values of longitudinal fields, when 5.0,4.0,3.0,2.0,1.0/ Jh  , with a fixed value of 

anisotropy, for example, 95.1/ JD , of the sites occupied by B- atoms. It is worth noting 

that the positive values of 5.0,4.0,3.0,2.0,1.0/ Jh  when , 95.1/ JD , make the 

sublattice magnetizations acting on B-atoms be lost. In the two figures(5,6), we report an 

interesting feature of compensation temperatures for 10/ JD , and 15/ JD  with 

different positive values of longitudinal fields, when, 5.0,4.0,3.0/ Jh respectively. As 

shown in the figures, the magnetization shows characteristic thermal variation behaviour that 

the system may produce three spin compensation points at 0T . It is worth mentioning that 

the increase the value of anisotropy, the increase the compensation temperature. In the region 

where the system may show multicompensation points, the sublattice magnetization Am  is 
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more ordered than the sublattice magnetization Bm  below the compensation temperature. 

These sublattice magnetizations are still incomplete so there is a residual magnetization in the 

system[3]. As the values of  Jh /  is increased, at certain values of the anisotropies JD /  

acting on the B-atoms, the direction of this residual magnetization may switch. That is to say, 

due to entropy some spins can flip their directions. Thus, the sublattice magnetization Bm  

becomes more ordered than the sublattice magnetization Am  for temperatures above the 

compensation temperature. So there is an intermediate point such that the cancellation is 

complete )0(  andMmm BA [5,6]. On the other hand, we have investigated the 

contribution of free energy to the thermodynamic phase stability of the mixed spin 

ferrimagnet which is considered. Gibbs free energy as a function of temperature has been 

calculated according to Eq.(3), is shown in Fig.(7). For the description of the free energy of 

the ferrimagnetic or antiferromagnetic state (at compensation point) and paramagnetic one(at 

transition temperature), one can observe the free energy curves has an inflexion that it 

corresponds a discontinuous behaviour and at critical temperature the free energy of the 

system is continuous, respectively. The results shown in Figs.(7,8) are consistent with those 

derived from Figs.(3,5,6). 

 

 

Fig.1. The phase diagram of the mixed spin-
2

1
 and spin-1 ferrimagnetic system for 4z , 

and different values of JD / , in the absence of Jh / .  
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Fig.2. The temperature dependences of the sublattice magnetizations Am , Bm  for the mixed-

spin ferrimagnet with the coordination number 4z , at a fixed value of 85.1/ JD .  

 

 
Fig.3. The temperature dependences of the sublattice magnetizations Am , Bm  for the mixed-

spin ferrimagnet with the coordination number 4z , at a fixed value of 90.1/ JD .  

 

 
Fig.4. The temperature dependencies of the total magnetization M  for the mixed-spin 
ferrimagnet with the coordination number 4z , for different values of Jh / , at a fixed 

value of 95.1/ JD .   
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Fig.5. The temperature dependencies of the total magnetization M  for the mixed-spin 
ferrimagnet with the coordination number 4z , for different values of Jh / , at a fixed 

value of 10/ JD .   

 

 
 
Fig.6. The temperature dependencies of the total magnetization M  for the mixed-spin 
ferrimagnet with the coordination number 4z , for different values of Jh / , at a fixed 

value of 15/ JD .  
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Fig.7. The temperature dependencies of Free Energy G  for the mixed-spin ferrimagnet with 
the coordination number 4z , for 5.0/ Jh , at a fixed value of 15,10/ JD , 

respectively. 
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Fig.8. The temperature dependencies of Free Energy G  for the mixed-spin ferrimagnet with 
the coordination number 4z , for 0.0/ Jh , at a fixed value of 90.1/ JD . 

 
 
Conclusion 
            We have studied the compensation phenomenon of a mixed spin-1/2 and spin-1 

Blume–Capel ferrimagnetic system using MF approximation on a square lattice in the 

absence and presence of an external magnetic field. The phase diagrams of the system with 

different anisotropies have been found by solving the general expressions numerically. So, 

the magnetization curves have exhibited some outstanding characteristics ( three 

compensation points). One can compare our results with those obtained in the mixed spin-1/2 

and spin-1 systems[12,16], in which the models show two compensation temperatures, 

respectively. On the other hand, one can observe that there is no response of the system for 

induction of a compensation point in the range of negative values of external fields, in 

contrast to positive ones influencing the existence and location of the compensation points, as 

shown in the figures(4,5,6), respectively. On the other hand, we have investigated the 

contribution of free energy to the thermodynamic phase stability of the mixed spin 

ferrimagnet which is considered. Finally, we hope that this work may be helpful to support 

and clarify the characteristic features, for the existence of a compensation point at low 

temperatures, in a series of molecular-based magnets, when the experimental data of 

ferrimagnetic materials are analyzed. 
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